ACEEE::30 30 Years of Energizing Efficiency

Advanced Metering Initiatives and Residential Feedback Programs

John A. "Skip" Laitner

American Council for an Energy-Efficient Economy

Karen Ehrhardt-Martinez

University of Colorado – Renewable and Sustainable Energy Institute

The Immediate Conclusions

- Energy efficiency has met 75 percent of the new demands for energy-related goods and services since 1970 while new energy supplies have met only 25 percent of those demands.
- But energy efficiency remains a highly invisible success story.
- Yes... "Science and technology can create much better choices." (DOE Secretary Chu 2009)
- But we won't get there unless we bring people back into the process.
- Among the means of integrating a people-centered process of smart technology adoption are a variety of feedback mechanisms.
- The savings are bigger than generally perceived and more persistent than imagined.
- Demand response programs will not generate as much cost-effective energy savings as programs designed for year-round savings.

Creating an Energy Revolution

A revolution doesn't happen when society adopts new tools, it happens when society adopts new behaviors.

Clay Shirky, Digital Guru

The New ACEEE Feedback Study

Advanced Metering Initiatives and Residential Feedback Programs: A Meta-Review for Household Electricity-Saving Opportunities June 2010 --- ACEEE Report Number E105

Authors: Karen Ehrhardt-Martinez, Kat A. Donnelly, & John A. "Skip" Laitner

> **Contributors:** Dan York, Jacob Talbot, & Katherine Friedrich

© American Council for an Energy-Efficient Economy 529 14th Street, Suite 600, Washington, D.C. 20045 Phone: 202-507-4000, Fax: 202-429-2248, aceee.org

> The entire report is available online at: http://www.aceee.org/research-report/e105

The Role of Advanced Meters

- Advance metering systems record customer consumption and other information on an hourly or more frequent basis and provide for daily or more frequent transmittal of measurements over a communication network to a central collection point. (FERC 2008)
- When combined with other technologies and programs, the data collected by advanced meters provide the opportunity to empower households to become better energy managers and reduce consumption.
- Advanced meters alone <u>are not sufficient</u> to change household energy consumption practices.
- To empower consumers, utilities must either directly or indirectly provide this information to consumers in a useful format that contextualizes the information, motivates action, and breaks down barriers.

The Feedback Meta Review

An assessment of 61 primary research studies of 57 feedback initiatives:

- Several continents and 9 countries
- 21 studies 1974-1994 What we call the "Energy Crisis Era"
- 36 studies 1995-2010 What we call the "Climate Era"

Region	Number of Studies	Percent		
United States	33	57%		
Europe	13	22%		
Canada	9	16%		
Other	3	5%		

Average Household Electricity Savings (4-12%) by Feedback Type*

*And yes, with persistent feedback there is persistent savings. . .

30 Years of Energizing Efficiency

Program Design and Savings

A variety of non-economic motivation strategies can effectively enhance feedback-related energy savings in households.

The Impact of Non-economic Motivational Elements

	Number of Studies	Household Energy Savings	Sources
Social Norms	14	2-10%	Alcott (2009), Ayers et al. (2009), Ehrhardt- Martinez (2009), Nolan et al. (2008), Schultz et al (2007), Wilhite et al. (1999)
Goal Setting	4	5-17%	Seligman (1978), Winett et al. (1982), Van Houwellingen (1989), Abrahamse et al. (2007)
Competitions	1	10-32%	Petersen et al. (2007)
Commitment	1	5-8%	Staats et al. (2004)

Demand Response and Savings

Feedback can be effective at:

- generating peak-load reductions and
- reducing overall levels of household energy consumption.

The focus of feedback programs influences the level of overall savings.

	Peak Savings		Overall Energy Savings		
Program Focus	Range	Average	Range	Average	
Peak Demand	1.2% to 33%	12.50%	-5.5% to 8.0%	3%	
Overall Conservation &					
Efficiency	n.a.	n.a.	1.2% to 32%	10%	

Overall energy savings are much higher for programs focused on overall efficiency and conservation.

The Persistence of Feedback-Induced Savings

The evidence from 27 of the 57 studies suggests that if the feedback is persistent, then feedback-related savings are persistent over time.

		_	Duration of	
0()	0	Type of	Study	Development of Octoberry
Study	Country	Feedback	(months)	Persistence of Savings
		Real Time		
Mountain (2006)	Canada	Aggregate	13	Persistent conservation effect.
		Real Time		
Mountain (2008)	Canada	Aggregate	24	Persistent conservation effect.
Nielsen (1993)	Denmark	Enhanced Billing	36	Persistent conservation effect.
				Energy savings increased from 4.8% (at 8
Staats et al. (2004)	Netherlands	Enhanced Billing	36	months) to 7.6% (at 24 months).
Van Houwellingen		Real Time		Energy conservation effect did not persist after the
(1989)	Netherlands	Aggregate	12	energy monitors were removed.
Wilhite and Ling				Energy savings increased from 7.6% at the end of
(1995)	Norway	Enhanced Billing	36	year two to 10% at the end of year three.
				The longer the duration of the intervention and the
				more information made available to the
Wilhite et al. (1999)	Norway	Enhanced Billing	21	household, the more persistent the impact.

National-Level Savings Estimates for the U.S. Residential Sector

National-level savings depend on type of feedback, program elements and level of participation, but the economics are generally favorable.

Scenario Impacts by 2030	Α	В	С	D
Reference Case Electricity Demand (billion kWh)	1,637	1,637	1,637	1,637
Reference Case Electricity Customers (millions)	146	146	146	146
Participating Feedback Customers (millions)	88	6	72	75
Total Electricity Savings (billion kWh)	40	6	68	103
Savings per Participant (kWh)	458	986	942	1369
Savings per Participant (percent of reference case)	4.10%	8.80%	8.40%	12.20%
Total Electricity Savings (percent of reference case)	2.50%	0.40%	4.20%	6.30%
Total Cost (million constant 2008 dollars, 2010 -2030)	\$8,150	\$1,909	\$21,631	\$22,489
Bill Savings (million constant 2008 dollars, 2010 – 2030)	\$22,398	\$3,510	\$37,878	\$57,050
Total Resource Cost Test Ratio	2.75	1.84	1.75	2.54

Closing Thoughts

- AMI technologies provide an important opportunity.
- By themselves, however, "Smart Meters" are not smart enough to provide the full opportunity for significant electricity savings.
- Past studies suggest that feedback-related savings during the climate change era (1995-2010) are in the range of 4-12 percent.
- Greater rates of savings can be generated given the right combination of program elements and policy support.
- Given its cost-effectiveness, universal enhanced billing programs should be implemented now.

Selected References:

- Abrahamse, W., L. Steg, C. Vlek, & T. Rothengatter. 2007. "The effect of tailored information, goal setting, and tailored feedback on household energy use, energy-related behaviors, and behavioral antecedents." *Journal of Environmental Psychology*, 27: 265-276.
- Ayers, Ian; Raseman, Sophie; and Alice Shih. 2009. "Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage." Working paper 15386. Washington, DC: National Bureau of Economic Research.
- Darby, S. 2006. "The Effectiveness of Feedback on Energy Consumption: A Review for DEFRA of the Literature on Metering, Billing and Direct Displays." <u>http://www.defra.gov.uk/environment/climatechange/uk/energy/research/pdf/enegyconsump-feedback.pdf</u>. Oxford, UK: Environmental Change Institute, University of Oxford.
- Electric Power Research Institute. 2009. "Residential Electricity Use Feedback: A Research Synthesis and Economic Framework." Report No: 1016844. Palo Alto, CA: EPRI.
- Electric Power Research Institute. 2010. "Guidelines for Designing Effective Energy Information Feedback Pilots: Research Protocols." Report No: 1020855. Palo Alto, CA: EPRI.
- van Houwelingen, J. T. & W. F. van Raaij. 1989. "The effect of goal setting and daily electronic feedback on in-home energy use." *Journal of Consumer Research* 16, 98–105. .

For Further Information Contact:

John A. "Skip" Laitner jslaitner@aceee.org

Karen Ehrhardt-Martinez, Ph.D.

Karen.Ehrhardt@colorado.edu

The complete research report is entitled:

Advanced Metering Initiatives and Residential Feedback Programs

Available from the American Council for an Energy-Efficient Economy: http://www.aceee.org/research-report/e105

September 14, 2010

